Trigonométrie (aire d'un trapèze isocèle)

Aide à la résolution d'exercices ou de problèmes de niveau inférieur au baccalauréat.
[participation réservée aux membres inscrits]
Règles du forum
Merci de soigner la rédaction de vos messages et de consulter ce sujet avant de poster. Pensez également à utiliser la fonction recherche du forum.
moalex
Utilisateur débutant
Utilisateur débutant
Messages : 7
Inscription : dimanche 16 mai 2021, 23:56
Statut actuel : Lycéen

Trigonométrie (aire d'un trapèze isocèle)

Message non lu par moalex »

Bonjour, j'ai du mal avec un numéro de mon exercice de cahier concernant la trigo.

Le problème va comme suit:
On construit un trapèze isocèle de telle manière que sa petite base et ses deux côtés non parallèles soient égaux. Quel doit-être l'angle d'inclinaison de ses côtés non parallèles pour que son aire soit maximale.
Étant donné que je n'ai pas de réelle mesure je ne sais pas comment m'y prendre. Pourriez-vous m'aider SVP.
MB
Administrateur
Administrateur
Messages : 7478
Inscription : samedi 28 mai 2005, 14:23
Statut actuel : Enseignant

Re: Trigonométrie

Message non lu par MB »

Bonjour, avec une figure ça ira peut-être mieux.
trapèze.jpg
Commencer par exprimer $b$ et $h$ en fonction de $a$ et de $\alpha$, puis exprimer l'aire du trapèze en fonction de ces deux même variables.
MB. (rejoignez pCloud afin d'obtenir 10Go de stockage en ligne gratuits)
Pas d'aide en message privé. Merci de consulter ce sujet avant de poster votre premier message.
moalex
Utilisateur débutant
Utilisateur débutant
Messages : 7
Inscription : dimanche 16 mai 2021, 23:56
Statut actuel : Lycéen

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par moalex »

Oui, la représentation a déjà été faite mais comment exprimer b et h sans aucun chiffre quelconque, car mon seul indice réside dans le fait que les cotés et la petite base ont la même mesure.
MB
Administrateur
Administrateur
Messages : 7478
Inscription : samedi 28 mai 2005, 14:23
Statut actuel : Enseignant

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par MB »

On peut exprimer $\sin(\alpha)$ et $\cos(\alpha)$ en fonction de $a$, $b$ et $h$.
MB. (rejoignez pCloud afin d'obtenir 10Go de stockage en ligne gratuits)
Pas d'aide en message privé. Merci de consulter ce sujet avant de poster votre premier message.
moalex
Utilisateur débutant
Utilisateur débutant
Messages : 7
Inscription : dimanche 16 mai 2021, 23:56
Statut actuel : Lycéen

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par moalex »

Ok j'y avais pensé. Du coup j'aurai :

$$\sin(\alpha) = \frac{h}{a}$$
et
$$\cos(\alpha) = \frac{b}{a}$$
Par contre, je ne sais plus quoi a faire a partir de là.
MB
Administrateur
Administrateur
Messages : 7478
Inscription : samedi 28 mai 2005, 14:23
Statut actuel : Enseignant

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par MB »

Oui, donc tu peux exprimer $h$ et $b$ en fonction de $a$ et $\alpha$. Il faudra ensuite exprimer l'aire du trapèze en fonction de ces deux mêmes variables.
MB. (rejoignez pCloud afin d'obtenir 10Go de stockage en ligne gratuits)
Pas d'aide en message privé. Merci de consulter ce sujet avant de poster votre premier message.
balf
Modérateur spécialisé
Modérateur spécialisé
Messages : 4034
Inscription : mercredi 02 janvier 2008, 23:18

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par balf »

Pour simplifier la vie, il faudrait ne pas oublier que $\sin\alpha$ est le facteur de projection sur la verticale, $\cos\alpha$ le facteur de projection sur l'horizontale, et que l'aire d'un trapèze est le produit de sa hauteur par la moyenne des bases.
MB
Administrateur
Administrateur
Messages : 7478
Inscription : samedi 28 mai 2005, 14:23
Statut actuel : Enseignant

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par MB »

Pour l'aire du trapèze, il est assez simple de voir qu'avec les notations précédentes, elle est donnée par $(a+b) \times h$.
Et donc la suite @moalex ?
MB. (rejoignez pCloud afin d'obtenir 10Go de stockage en ligne gratuits)
Pas d'aide en message privé. Merci de consulter ce sujet avant de poster votre premier message.
moalex
Utilisateur débutant
Utilisateur débutant
Messages : 7
Inscription : dimanche 16 mai 2021, 23:56
Statut actuel : Lycéen

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par moalex »

Désolé du délai.
Donc maintenant je sais que ma base est $\cos \alpha$ et que ma hauteur est $\sin \alpha$.
Mais il me manque toujours ma grande base pour pouvoir effectuer une équation non?
MB
Administrateur
Administrateur
Messages : 7478
Inscription : samedi 28 mai 2005, 14:23
Statut actuel : Enseignant

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par MB »

moalex a écrit : jeudi 20 mai 2021, 02:36 Donc maintenant je sais que ma base est $\cos x$ et que ma hauteur est $\sin x$.
Alors on peut changer les notations est poser $x = \alpha$, je n'ai rien contre, mais il faut être précis dans ce que l'on écrit. Sauf à poser $a = 1$, mais dans ce cas il faut le dire, la hauteur $h$ n'est pas égale à $\sin(x)$. De même, aucune des deux bases du trapèze n'est égale à $\cos(x)$.

Merci de préciser vos réponses, en utilisant si possible les notations introduites sur la figure.
MB. (rejoignez pCloud afin d'obtenir 10Go de stockage en ligne gratuits)
Pas d'aide en message privé. Merci de consulter ce sujet avant de poster votre premier message.
moalex
Utilisateur débutant
Utilisateur débutant
Messages : 7
Inscription : dimanche 16 mai 2021, 23:56
Statut actuel : Lycéen

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par moalex »

Je crois avoir trouvé les informations nécessaire.
J'aurais donc :
  • $h = \sin x$
  • $b = \cos x$ (petite base)
  • $B = \cos x + 2y$ (grande base)
Cela vous semble t'il correct?
MB
Administrateur
Administrateur
Messages : 7478
Inscription : samedi 28 mai 2005, 14:23
Statut actuel : Enseignant

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par MB »

Non ça ne me semble pas correct, et je pense qu'il serait préférable de rester sur les notations indiquées sur la figure (à part éventuellement le $x$ au lieu du $\alpha$. D'ailleurs, à quoi correspond donc le $y$ dans vos résultats ?
MB. (rejoignez pCloud afin d'obtenir 10Go de stockage en ligne gratuits)
Pas d'aide en message privé. Merci de consulter ce sujet avant de poster votre premier message.
moalex
Utilisateur débutant
Utilisateur débutant
Messages : 7
Inscription : dimanche 16 mai 2021, 23:56
Statut actuel : Lycéen

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par moalex »

Le $y$ correspondrait aux 2 côtés inconnus de la base de mon trapèze.
MB
Administrateur
Administrateur
Messages : 7478
Inscription : samedi 28 mai 2005, 14:23
Statut actuel : Enseignant

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par MB »

Le $y$ serait donc égal au $b$ de la figure ?
Une nouvelle fois, merci d'utiliser les mêmes notations que sur la figure, car sinon on ne va jamais s'y retrouver.
Dans tous les cas les résultats ne sont pas corrects.
MB. (rejoignez pCloud afin d'obtenir 10Go de stockage en ligne gratuits)
Pas d'aide en message privé. Merci de consulter ce sujet avant de poster votre premier message.
moalex
Utilisateur débutant
Utilisateur débutant
Messages : 7
Inscription : dimanche 16 mai 2021, 23:56
Statut actuel : Lycéen

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par moalex »

Ok je viens de comprendre. Un de mes professeurs m'a expliqué qu'en fait, il s'agissait de substituer mon $x$ qui est la valeur de mes 3 côtés, car la valeur de $x$ ne change rien au problème étant donné que l'angle est la chose que nous cherchons.
MB
Administrateur
Administrateur
Messages : 7478
Inscription : samedi 28 mai 2005, 14:23
Statut actuel : Enseignant

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par MB »

Ah donc si je comprends bien, $x$ correspond à $a$ et pas à l'angle $\alpha$ !? Je pensais que pour vous $b$ était la petite base et $B$ la grande base. Une dernière fois, merci d'utiliser les notations de la figure précédentes.
MB. (rejoignez pCloud afin d'obtenir 10Go de stockage en ligne gratuits)
Pas d'aide en message privé. Merci de consulter ce sujet avant de poster votre premier message.
balf
Modérateur spécialisé
Modérateur spécialisé
Messages : 4034
Inscription : mercredi 02 janvier 2008, 23:18

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par balf »

Je voudrais insister sur une petite difficulté: en fin de compte, l'aire du trapèze va s'exprimer en fonction de $a$ et de $\cos\alpha$. Si l'on pose $x=\cos\alpha$, on obtient un trinôme du second degré en $x$, et comme la fonction cosinus est décroissante sur $[0,\pi]$ (seul intervalle géométriquement significatif ici), un maximum par rapport à $\alpha$ va correspondre à un minimum par rapport à $x$.
B. A.
MB
Administrateur
Administrateur
Messages : 7478
Inscription : samedi 28 mai 2005, 14:23
Statut actuel : Enseignant

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par MB »

Bonjour @balf, j'aurais personnellement limité $\alpha$ à l'intervalle $[0;\frac{\pi}{2}]$. Et le fait de poser $x = \cos(\alpha)$ ne ferait pas apparaître un radical dans l'expression donnant l'aire du trapèze en fonction de $x$ ?

[Edit] En effectuant les calculs, je trouve $A = a^2 \sin(\alpha)(1+\cos(\alpha))$.
Donc en posant $f(\alpha)=\sin(\alpha)(1+\cos(\alpha))$, il me semble que ce serait $f'(\alpha)$ que l'on pourrait exprimer sous la forme d'un polynôme de degré 2 en $x$.
MB. (rejoignez pCloud afin d'obtenir 10Go de stockage en ligne gratuits)
Pas d'aide en message privé. Merci de consulter ce sujet avant de poster votre premier message.
balf
Modérateur spécialisé
Modérateur spécialisé
Messages : 4034
Inscription : mercredi 02 janvier 2008, 23:18

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par balf »

Bonjour, @MB,

Il n'y aura pas de radical, parce qu'on peut utiliser ici les formules de duplication :
$$f(\alpha)=a^2\Bigl(\sin\alpha+\frac12\sin2\alpha\Bigr), \;\text{ d'où }\;f'(\alpha)=a^2(\cos\alpha+\cos 2\alpha)=a^2(2\cos^2\alpha+\cos\alpha-1).$$
B. A.
MB
Administrateur
Administrateur
Messages : 7478
Inscription : samedi 28 mai 2005, 14:23
Statut actuel : Enseignant

Re: Trigonométrie (aire d'un trapèze isocèle)

Message non lu par MB »

Oui, c'est donc bien $f'$ que l'on exprime comme un polynôme de degré 2 en $x$.
MB. (rejoignez pCloud afin d'obtenir 10Go de stockage en ligne gratuits)
Pas d'aide en message privé. Merci de consulter ce sujet avant de poster votre premier message.