[TS] Raisonnement par récurrence ...

Aide à la résolution d'exercices ou de problèmes de niveau inférieur au baccalauréat.

Modérateur : gdm_sco

Règles du forum
Merci de soigner la rédaction de vos messages et de consulter ce sujet avant de poster. Pensez également à utiliser la fonction recherche du forum.
Exdanrale
Utilisateur confirmé
Utilisateur confirmé
Messages : 21
Inscription : mercredi 12 octobre 2005, 17:31

[TS] Raisonnement par récurrence ...

Message par Exdanrale »

Le but de l'exercice est de montrer par récurrence que :

$\ds\sum_{k=1}^{n} \ {k}² = [n(n+1)(2n+1)]/6$

est vrai pour tout $n \ge 1$

Dans l'initialisation, j'arrive à montrer que Pn est vraie au rang n=1 mais après je bloque ... Je sais (enfin je crois !) que je dois arriver à montrer que :

$\ds\sum_{k=1}^{n+1} \ {k}² = [(n+1)(n+2)(2n+3)]/6$ (j'ai obtenu ca en calculant la formule du début mais avec n+1)

Et j'en suis arrivé à :

$\ds\sum_{k=1}^{n+1} \ {k}² = 1²+2² + ... + n² + (n+1)² = \ds\sum_{k=1}^{n} \ {k}² + (n+1)²$

Mais de là je n'arrive pas à retomber sur ce que j'espère ... Ai-je commis une erreur ?
Merci d'avance de votre aide :)

amalfi
Utilisateur débutant
Utilisateur débutant
Messages : 4
Inscription : mercredi 06 septembre 2006, 17:18

Message par amalfi »

Tu es sur le bon chemin: remplace la somme (celle jusqu'à n) par ce que tu sais (ton hypothèse de récurrence), mets au même dénominateur et factorise. Tu tomberas sur ce que tu voulais.

Exdanrale
Utilisateur confirmé
Utilisateur confirmé
Messages : 21
Inscription : mercredi 12 octobre 2005, 17:31

Message par Exdanrale »

amalfi a écrit :Tu es sur le bon chemin: remplace la somme (celle jusqu'à n) par ce que tu sais (ton hypothèse de récurrence), mets au même dénominateur et factorise. Tu tomberas sur ce que tu voulais.
Merci en fait c'était tout bête :? Simplement je n'avais pas remarqué que 2n² + 7n + 6 était également à la multiplication des deux termes qui me manquaient ...
Encore merci et bonne aprem' :p !