Passage d'un nombre en base 8 à un nombre en base 4

Aide à la résolution d'exercices ou de problèmes de niveau inférieur au baccalauréat.

Modérateur : gdm_sco

Règles du forum
Merci de soigner la rédaction de vos messages et de consulter ce sujet avant de poster. Pensez également à utiliser la fonction recherche du forum.
Nicole 14
Utilisateur confirmé
Utilisateur confirmé
Messages : 27
Inscription : dimanche 13 janvier 2008, 17:48

Passage d'un nombre en base 8 à un nombre en base 4

Message par Nicole 14 »

Le fils d'un ami désire passer un examen à l'Administration et me pose le problème suivant. Ces notions sont très anciennes pour moi et malheureusement je n'ai plus les ouvrages reprenant ces mati!ères. Voici le problème : Que vaut en base 4: 704 en base 8. Pourriez-vous par la même occasion me rappeler la formule à utiliser?

Merci d'avance pour ce que vous m'écrirez.

rebouxo
Modérateur global
Modérateur global
Messages : 6962
Inscription : mercredi 15 février 2006, 13:18
Localisation : le havre

Re: Passage d'un nombre en base 8 à un nombre en base 4

Message par rebouxo »

$704 = 7 \times 8^2 + 0 \times 8^1 + 4 \times 8^0$.

Il faut donc l'écrire avec des puissances de $4$ et avec des chiffres inférieurs strictement à $4$.

Soit on passe par la base $10$ et on effectue les divisions par $4$ (méthode très générale) soit on ruse (ici compte tenu des deux bases ça évite des calculs).

$ 704_8 = 452_{10} = 4 \times 113 = 4(28 \times 4 +1) = 4(4 \times 4 \times 7 +1) = 4( 4 \times 4 \times (4 + 3) +1)$.

En développant, on obtient $ 4^4 + 3 \times 4^3 + 4 = 13010_4$.

En posant les divisions sucessives, les chiffres sont les restes des divisions par $4$.

Autre méthode (qui marche bien ici mais seulement ici).

$7 \times 8^2 + 4 \times 4^0 = (4+3)\times (2 \times 4)^2 + 4^1$.

Ensuite on développe : $4 \times 2^2 \times 4^2 + 3 \times 2^2 \times 4^2 + 4^1 = 4^3 + 3 \times 4^3 + 4^1 = 13010_4$.

Note $704_8$ c'est $704$ en base $8$, $13010_4$ c'est en base $4$.
A line is a point that went for a walk. Paul Klee.
Par solidarité, pas de MP.

Nicole 14
Utilisateur confirmé
Utilisateur confirmé
Messages : 27
Inscription : dimanche 13 janvier 2008, 17:48

Re: Passage d'un nombre en base 8 à un nombre en base 4

Message par Nicole 14 »

Un tout grand merci à rebouxo.

Par ton développement, tu as fait revivre les souvenirs de ma jeunesse.

Encore merci.