Norme $H^{-1}$

Aide à la résolution d'exercices ou de problèmes de niveau supérieur au baccalauréat.

Modérateur : gdm_sco

Règles du forum
Merci de soigner la rédaction de vos messages et de consulter ce sujet avant de poster. Pensez également à utiliser la fonction recherche du forum.
mokata
Utilisateur débutant
Utilisateur débutant
Messages : 6
Inscription : mardi 18 avril 2017, 11:56

Norme $H^{-1}$

Message par mokata »

Bonjour tout le monde,

Soit $u\in L^2([0,2\pi]^n)$, une fonction telle que : $\forall x=(x_1,...,x_n)\in \Omega=[0,2\pi]^n\;,\;u(x)=\sum_{j_1=-\infty}^{+\infty}...\sum_{j_n=-\infty}^{+\infty}a_{j_1,...,j_n}e^{ij.x}$ avec $j.x=j_1x_1+...+j_nx_n$.

Je veux calculer $$\left \| u \right \|_{H^{-1}(\Omega)}\; \text{et}\;\; \left \| \nabla u \right \|_{(H^{-1}(\Omega))^n}\;$$ Je l'ai fait dans le cas scalaire. Avez-vous une idée ?

Merci d'avance pour vos retours.