[3ème] Irrationnalite de racine de 2

Aide à la résolution d'exercices ou de problèmes de niveau inférieur au baccalauréat.

Modérateur : gdm_sco

Règles du forum
Merci de soigner la rédaction de vos messages et de consulter ce sujet avant de poster. Pensez également à utiliser la fonction recherche du forum.
MB
Administrateur
Administrateur
Messages : 7187
Inscription : samedi 28 mai 2005, 14:23
Statut actuel : Enseignant

Message par MB »

rouxn a écrit :Pour ceux que ca interesse, j'ai fait un petit DM sur ce sujet en 3eme, je peux le poster.
Pour pouvoir uploader des fichiers dans ce forum, il faut faire partie du groupe 'Uploaders' (je t'ajoute au groupe). Ce devoir pourrait être posté dans la section des professeurs.
MB (Pas d'aide en Message Privé)
Merci d'utiliser MathJax (voir ici) et d'éviter le style SMS pour la lisibilité des messages.

Arthur Accroc
Utilisateur éprouvé
Utilisateur éprouvé
Messages : 131
Inscription : lundi 17 octobre 2005, 20:33

Irrationnalité : niveau de connaissance requis ???

Message par Arthur Accroc »

Je veux pas critiquer, mais à mon humble avis de professeur de lycée, on a depuis longtemps explosé le niveau d'une troisième normale, et même d'une seconde, d'une première et d'une TS, au moins de début d'année.

Combien d'élèves dans ta classe comprennent ce qu'est un irrationnel ? Parce que chez moi, en seconde, ça passe chez un élève sur trois cette année, et c'est parce que j'ai une BONNE seconde !

Enfin, c'est toujours marrant de voir des variations sur un thème classique :-)
\bye

Arthur Accroc

cyrille
Utilisateur chevronné
Utilisateur chevronné
Messages : 1222
Inscription : mardi 07 juin 2005, 20:42
Localisation : Cantal

Message par cyrille »

On parle bien de la classe de 3°, ces petits de 14-15 ans qui ont du mal avec la multiplication ?

En tout cas bon courage, je sais que si je faisais ça à ma classe (c'est de l'enseignement agricole donc un cran en dessous), ils feraient une attaque cérébrale dans la minute.

Nico
Utilisateur éprouvé
Utilisateur éprouvé
Messages : 616
Inscription : vendredi 24 juin 2005, 11:10
Localisation : Narbonne

Message par Nico »

et oui, et l'irrationnalité de racine de 2 est au programme en 3e, ainsi que ca demonstration....
Pour ce qui est de l'introduction de la contraposée, je la fait en 5e, très naturellement, ca passe très bien, et je recolte les fruits cette année en 3e.
Enfin, je suis moi aussi passé par le lycée, et si ces sujets sont niveaux TS, je change de métier.
Pour info, ce sont des devoirs en temps libre et volontaires, j'ai eu pas mal de gamin l'an dernier intéréssé (1 bon tiers), et cette année, 4 gamins ont fait le boulot sur les résolutions d'equation, et ce n'est que le début, comme quoi, si on leur propose des sujets un peu ardus, mais intéressant, ca les motive.
Sur ce. Bonne journée.
PS: avant de faire des critiques, plongez vous dans les programmes.

cyrille
Utilisateur chevronné
Utilisateur chevronné
Messages : 1222
Inscription : mardi 07 juin 2005, 20:42
Localisation : Cantal

Message par cyrille »

rouxn a écrit :et oui, et l'irrationnalité de racine de 2 est au programme en 3e, ainsi que ca demonstration....
Pour ce qui est de l'introduction de la contraposée, je la fait en 5e, très naturellement, ca passe très bien, et je recolte les fruits cette année en 3e.
Enfin, je suis moi aussi passé par le lycée, et si ces sujets sont niveaux TS, je change de métier.
Pour info, ce sont des devoirs en temps libre et volontaires, j'ai eu pas mal de gamin l'an dernier intéréssé (1 bon tiers), et cette année, 4 gamins ont fait le boulot sur les résolutions d'equation, et ce n'est que le début, comme quoi, si on leur propose des sujets un peu ardus, mais intéressant, ca les motive.
Sur ce. Bonne journée.
PS: avant de faire des critiques, plongez vous dans les programmes.
ce n'est pas dans mes programmes, nous avons des programmes un cran en dessous en techno.

:wink:

Nico
Utilisateur éprouvé
Utilisateur éprouvé
Messages : 616
Inscription : vendredi 24 juin 2005, 11:10
Localisation : Narbonne

Message par Nico »

oui je comprend, la remarque n'était pas pour toi. :wink:

Arthur Accroc
Utilisateur éprouvé
Utilisateur éprouvé
Messages : 131
Inscription : lundi 17 octobre 2005, 20:33

Ne nous fachons pas

Message par Arthur Accroc »

Je ne critique pas, je trouve ça super de pouvoir faire ce genre de choses en 3ème. Je dis juste que sur les quelques années d'expérience que j'ai derrière moi, je n'ai jamais rencontré plus de trois élèves par classes qui avaient l'air d'avoir atteint ce niveau de maitrise. Mais bon, je ne suis pas spécialement dans un bahut haut de gamme, donc mon opinion est peut-être biaisée.

Enfin, quand même, j'ai fait un petit sondage cette année dans ma seconde (la meilleure que j'ai eu depuis 4 ans) : 5 élèves sur 32 savent ce qu'est un irrationnel, 7 ont une petite idée de ce à quoi peut ressembler une démonstration, et une petite quinzaine maitrisent le calcul fractionnaire. Ceux-là distancent d'ailleurs sans peine. Et bien-sûr, aucun n'a entendu parler de récurrence, de fractions continues et de toutes ces diableries ;-) Et je t'assure que je connais un certain nombre de TS de mon lycée qui blémissent lorsqu'on leur parle de ces ésotérismes.

Bon, cela dit, j'arrète de me plaindre, ce genre de débat n'a pas vraiment sa place sur ce forum. J'ai d'ailleurs hésité à poster ici.

Je suis par contre toujours intéressé par une démonstration de l'irrationnalité de $\sqrt2$ par récurrence, si les arguments sont recevables par des élèves de troisième (même bons, je ne crois pas que l'argument du caractère non fini mais périodique du développement en fraction continue soit bien clair pour eux, et encore moins qu'ils puissent le reproduire eux-même. Ou alors je suis vraiment largué !).

Actuellement, j'en connais deux basées sur le caractère irréductible de la fraction, l'une travaillant sur la parité des numérateur et dénominateur, l'autre travaillant sur le dernier chiffre. Et leurs variantes en procédant non pas par irréductibilité, mais par descente infinie (ce qui revient au même, en fait). Plus celle avec les fractions continues. Et enfin une basée sur la descente infinie et des parties aliquotes communes (Arnaudiès-Fraysse, tome 1, page 2 ;-))
\bye

Arthur Accroc

Nico
Utilisateur éprouvé
Utilisateur éprouvé
Messages : 616
Inscription : vendredi 24 juin 2005, 11:10
Localisation : Narbonne

Message par Nico »

Cette demonstration de $\sqrt 2$ repose sur l'irréductibilité de fractions et sur les contraposées, aucune récurrence, bien trop compliqué....
Nicolas