Nombres premiers : les nombres libertins

Discussions générales concernant les mathématiques.
[forum modéré par les modérateurs globaux du site]
Règles du forum
Merci de soigner la rédaction de vos messages et de consulter ce sujet avant de poster. Pensez également à utiliser la fonction recherche du forum.
Algibri

Nombres premiers : les nombres libertins

Message par Algibri »

Les nombres libertins?
Vous allez me demander ce que c'est?
Eh bien, je vais vous répondre.
Ce sont des nombres premiers qui vont par couple et qui pratiquent l'échangisme. Oh! les coquins!

Prenez par exemple le couple de nombres premiers :

19 et 71

et appliquez-leur l'algo suivant (l'algo LIB)

1. Calculez la partie entière de leurs racines carrées

Pour 19 ce sera 16 = 4^2
et pour 71 ce sera 64 = 8^2

2. Ensuite calculez les restes de chacun de ces 2 nombres

Pour 19 ce sera 3 (19-16=3)
et pour 71 ce sera 7 (71-64=7)

3. Dernière étape : échangez leurs restes respectifs et additionnez-les aux carrés.

Vous aurez pour 19 ...16+7=23
et pour 71 .....64+3 = 67.

23 et 67 sont également premiers!

4. Si le couple obtenu est un couple de nombres premiers distincts, 19 et 71 est un couple libertin.

En termes plus formels

Soit p1 et p2 deux nombres premiers libertins
c1 et c2 les parties entières de leurs racines
r1 et r2 leurs restes

il existe pour tout couple libertin, un couple de nombres premiers q1 et q2 tel que

q1=p1+r2
q2=p2+r1

Une première implication

(p1,p2) et (q1,q2) sont solutions d'un nombre pair de Goldbach
p1+p2=q1+q2

Une seconde

Si on applique à (pi,qj) l'algo cité ci-dessus cela donnera (pi,qj)

(p1,q1) donnera (p1,q1)
(p1,q2) donnera (p1,q2)
(p2,q1) donnera (p2,q1)
(p2,q2) donnera (p2,q2)

Existe-t-il une infinité de couples libertins?
Ont-ils des propriétés particulières?

Je donne d'autres exemples de couples libertins

(p1,p2) 23,37
(q1,q2) 17,43


43,101
37,107

5,43
11,37

17,43
23,37

43,149
41,151

43,167
59,151

Algibri

Re: Nombres premiers : les nombres libertins

Message par Algibri »

Je remonte ce fil de discussion qui n'a suscité apparemment aucun intérêt et pourtant....que de produits de 2 couples libertins peuvent être aisément factorisés.

p1*q1= (x^2 + r1)*(y^2+r1)
= xy^2 + r1*(x^2+y^2) + r1^2

Ça ne vous rappelle rien?
N'oubliez pas le rapport entre x,y et r1 ... un indice?

Idem pour p2*q2.

Ps : j'ai sommeil

Alagos
Utilisateur débutant
Utilisateur débutant
Messages : 2
Inscription : mardi 27 juillet 2010, 01:46

Re: Nombres premiers : les nombres libertins

Message par Alagos »

Le sujet date un peu, et je suis tombé dessus par hasard. Néanmoins, en parcourant vite fait le truc, on se rend compte que non seulement pour les couples (p1, p2) ou (q1, q2), les sommes p1+p2 et q1+q2 donnent trivialement un nombre pair mais, plus troublant, il semble que ce nombre pair soit toujours multiple de 6 (je laisse à quelqu'un le soin de le formaliser rigoureusement).

evariste_G
Utilisateur chevronné
Utilisateur chevronné
Messages : 1448
Inscription : vendredi 19 décembre 2008, 19:13
Localisation : Bordeaux

Re: Nombres premiers : les nombres libertins

Message par evariste_G »

Je passe juste pour faire quelques remarques, qui n'enlèvent en rien l'intérêt que l'on peut avoir sur ce phénomène :

Les libellés des étapes ne sont pas précis ... En effet, dès l'étape 1, on s'y perd : "la partie entière de leur racine carrée" est incorrecte ici étant donnée que la partie entière de la racine carrée de 19 est "4" (et non 16). Il faudrait ici dire "le carré de la partie entière de leur racine carrée".

Ensuite, à l'étape 2, "calculer les restes de chacun de ces deux nombres" .... les restes ? Quels restes ? Ah ! "La différence" plutôt ...

Bon, je ne vais pas éplucher tout ça, mais si ça ne suscite pas l'intérêt des matheux, c'est peut-être que le problème est mal formulé non ? Maintenant, je n'apprécie pas trop les problèmes d'arithmétiques en général, donc je suis peut-être de mauvaise foie :P
Mathématiques, LaTeX et Python : http://www.mathweb.fr

Garulfo
Utilisateur éprouvé
Utilisateur éprouvé
Messages : 107
Inscription : mardi 10 juillet 2007, 20:49
Localisation : Sherbrooke, Québec, Canada

Re: Nombres premiers : les nombres libertins

Message par Garulfo »

evariste_G a écrit :[...]je suis peut-être de mauvaise foie :P
Une sirose peut-être ?
Ok ok c'est hors-sujet, mais je ne pouvais pas m'en empêcher :mrgreen:

evariste_G
Utilisateur chevronné
Utilisateur chevronné
Messages : 1448
Inscription : vendredi 19 décembre 2008, 19:13
Localisation : Bordeaux

Re: Nombres premiers : les nombres libertins

Message par evariste_G »

Garulfo a écrit :
evariste_G a écrit :[...]je suis peut-être de mauvaise foie :P
Une sirose peut-être ?
Ok ok c'est hors-sujet, mais je ne pouvais pas m'en empêcher :mrgreen:
Il me semblait bien que j'allais faire une faute d'orthographe ici ... Et comme ma flemme est grandissante, bien sûr, je n'ai pas eu le courage d'aller voir si le "e" était de trop ... ça m'appendra tient ! :arrow:
Mathématiques, LaTeX et Python : http://www.mathweb.fr

madgel
Utilisateur débutant
Utilisateur débutant
Messages : 9
Inscription : vendredi 13 septembre 2013, 22:50

Re: Nombres premiers : les nombres libertins

Message par madgel »

Il y a matière a réflexion

43,101 107 - 43 = 64 + 37 = 101
37,107

5,43 43 - 11= 32 +5 =37
11,37

17,43 43 -23 = 20 + 17 = 37
23,37

43,149 151 - 43 = 108 + 41 = 149
41,151

43,167
59,151 167- 59 = 108 + 43 = 151
q2 - p1 = x +q1 = p2

jcs
Utilisateur chevronné
Utilisateur chevronné
Messages : 1358
Inscription : lundi 24 novembre 2008, 22:17

Re: Nombres premiers : les nombres libertins

Message par jcs »

bonjour à tous
totalement hors sujet
1 -1
cirrhose
bonne journée