Construction de parallélogrammes

Aide à la résolution d'exercices ou de problèmes de niveau inférieur au baccalauréat.

Modérateur : gdm_sco

Règles du forum
Merci de soigner la rédaction de vos messages et de consulter ce sujet avant de poster. Pensez également à utiliser la fonction recherche du forum.
CAROLERAULT
Utilisateur débutant
Utilisateur débutant
Messages : 3
Inscription : mardi 11 mars 2008, 22:07

Construction de parallélogrammes

Message par CAROLERAULT »

Bonsoir,
C'est la première fois que je me connecte sur ce forum. Ma fille 5ème a une construction géometrie. Je ne suis pas très douée en math et cela fait un bout de temps que nous essayons de contruire cette figure mais il y a toujours quelque chose qui cloche. alors je vous demande de l'aide : Voici l'énnoné :
Construire les parallélogrammes suivants à l'aide des instruments de géométrie.

WXYZ tel que YZ=5cm et l'ange WXZ=70°.
On nous place les points suiants :

X
x


Y
x

Compas, règle, équerre, rapporteur... nous avons tout le matériel, on a relut toutes les propriétés mais je sèche.

D'avance un grand merci
CR

rebouxo
Modérateur global
Modérateur global
Messages : 6962
Inscription : mercredi 15 février 2006, 13:18
Localisation : le havre

Re: Construction de parallélogrammes

Message par rebouxo »

C'est pas super clair comme description.

Vous avez plusieurs points de placer ? Il faut finir le parallèlogramme, c'est cela ?

Olivier
A line is a point that went for a walk. Paul Klee.
Par solidarité, pas de MP.

balf
Utilisateur chevronné
Utilisateur chevronné
Messages : 3934
Inscription : mercredi 02 janvier 2008, 23:18

Re: Construction de parallélogrammes

Message par balf »

Si j'ai bien compris, vous avez deux points donnés, X et Y et,depuis le point X, on doit voir le segement [WZ] sous un angle de 70° ? J'ai bien une solution, mais je crains qu'elle ne fasse appel à des notions qu'on n'enseigne plus au collège, mais comme je n'ai qu'une idée très vague des programmes...

À tout hasard, voici : si l'angle $\widehat{WXZ} $ fait 70°, l'angle $\widehat{XZY}$ aussi (angles alternes-internes). Donc, depuis le point Z, on voit le segment [XY] sous le même angle. Or (c'est ici que je ne suis pas sûr que ce soit au programme), les points depuis lesquels on voit un segment sous un angle donné constituent un arc de cercle, passant par X et Y. Le problème est alors de construire cet arc de cercle. Une fois construit,comme la longueur YZ doit être de 5 cm, le point se trouve Z sur le cercle de centre Y et de rayon 5 cm. Il est donc en fin de compte à l'intersection de ce cercle et de l'arc de cercle dont il était question plus haut.
Une fois qu'on a Z, il ne reste qu'à placer W, mais c'est une histoire classique de construction de parallèles ,à (XY) passant par Z d'une part, à (YZ) passant par X de l'autre : le point W est l'intersection de ces parallèles.

Comme j'explique sans fournir de figure, je ne suis pas trop sûr que ce soit bien clair... et puis il reste la construction de l'arc de cercle (c'est une histoire de triangle isocèle de base [XY] à construire).

B.A.

CAROLERAULT
Utilisateur débutant
Utilisateur débutant
Messages : 3
Inscription : mardi 11 mars 2008, 22:07

Re: Construction de parallélogrammes

Message par CAROLERAULT »

Oui je sais.
Je joins l'ennoncé pour aide. En fait il faut construire le parallelogramme WXYZ
....................X



...............................Y


La distance entre XY est de 4.2 cm (mesurer à la régle) mais ce n'est mentionné dans l'énnoncé
seule YZ = 5 cm est indiqué et WXZ = 70°.
D'après les propriétés, on sait que WZ est // à XY et que YZ =XW et //
Comment construire cette figure. On a retourné le problème dans tous les sens, mais y a un truc qui nous manque.
Merci
Vous ne pouvez pas consulter les pièces jointes insérées à ce message.

balf
Utilisateur chevronné
Utilisateur chevronné
Messages : 3934
Inscription : mercredi 02 janvier 2008, 23:18

Re: Construction de parallélogrammes

Message par balf »

Il n'y a pas d'énoncé livré...

B.A.

CAROLERAULT
Utilisateur débutant
Utilisateur débutant
Messages : 3
Inscription : mardi 11 mars 2008, 22:07

Re: Construction de parallélogrammes

Message par CAROLERAULT »

Je n'arrive pas à l'envoyer. Demain. en tous les cas merci pour l'aide.

lafayette
Utilisateur éprouvé
Utilisateur éprouvé
Messages : 293
Inscription : samedi 12 mai 2007, 16:54

Re: Construction de parallélogrammes

Message par lafayette »

CAROLERAULT a écrit :Construire les parallélogrammes suivants à l'aide des instruments de géométrie.

WXYZ tel que YZ=5cm et l'ange WXZ=70°.
On nous place les points suiants :

X
x
Bonjour,
Puisque $YZ=5$ cm alors $Z$ est quelque part sur un cercle de centre $Y$ et de rayon 5 cm. Tracez ce cercle $C_1$.
De plus, $YZ=WX$ (propriété du parallèlogramme) donc $W$ est sur un cercle de centre $X$ et de rayon 5 cm. Tracez ce cercle $C_2$.
Puis, vous choisissez un point $W$ au hasard sur le cercle $C_2$. Il ne vous reste qu'à respecter l'angle $WXZ=70°$ : tracez donc cet angle à partir du segment [WX] : il va couper le cercle $C_1$ en un point qui vous conviendra...

balf
Utilisateur chevronné
Utilisateur chevronné
Messages : 3934
Inscription : mercredi 02 janvier 2008, 23:18

Re: Construction de parallélogrammes

Message par balf »

Qu'est-ce qui prouve qu'alors (WX) et (YZ) sont parallèles ?

B.A.

lafayette
Utilisateur éprouvé
Utilisateur éprouvé
Messages : 293
Inscription : samedi 12 mai 2007, 16:54

Re: Construction de parallélogrammes

Message par lafayette »

Oui, tu as raison... Il faut en plus utiliser que $WZ=XY$ mais effectivement, ce n'est pas si simple que ça ! Donc, mettons que je n'ai rien dit ! :oops: J'y réfléchirai un peu plus tard...quand j'aurai fini de corriger mes copies :evil:

balf
Utilisateur chevronné
Utilisateur chevronné
Messages : 3934
Inscription : mercredi 02 janvier 2008, 23:18

Re: Construction de parallélogrammes

Message par balf »

J'ai bien une solution, le problème est que ça me paraît difficile por un élève de cinquième de nos jours. Ça fait appel à des résultats sur les angles inscrits que moi, j'ai vu (je n'ose dire quand) en quatrième. À tout hasard, je donne ma solution ; si quelqu'un voit comment simplifier, j'en serai très heureux.

On construit sur le segment [XY] un triangle isocèle OXY, dont les angles égaux $\angle$ OXY et OYX mesurent 20° (le complémentaire de 70°). Prenant ce point O comme centre, on trace le grand arc de cercle passant par X et Y. Tout point M de cet arc de cercle voit le segment[XY] sous un angle de 70°. Le point Z que l'on cherche à construire est donc sur cet arc de cercle. Il est aussi sur le cercle de centre Y et de rayon 5cm. Il suffit donc de prendre l'un des points d'intersection de ce cercle et de l'arc de cercle susnommé. Le reste, pour construire W, est la routine habituelle de construction de parallèles à la règle et au compas (ou d'utilisation du rapporteur, maintenant que l'on dospose de la droite (XZ)).

Pour un niveau de cinquième, ça me paraît bien dur, tout de même...

B.A.